VII. Samples of 10 taken in 1985 and 1995 revealed the average time people spend grocery shopping decreased from 18 minutes to 14 minutes. Respective standard deviations were 5 minutes and 4 minutes. Test at the .10 level of significance whether there has been a change in shopping time variability.

Given:					
n_1 and $n_2 = 10$					
$\bar{x}_1 = 18 \text{ minutes}$					
$\bar{x}_2 = 14 \text{ minutes}$					
$S_1 = 5 \text{ minutes}$					
$S_2 = 4 \text{ minutes}$					
.10 level of significance					

- 1. $H_0: \sigma_1^2 = \sigma_2^2$ and $H_1: \sigma_1^2 \neq \sigma_2^2$
- 2. The level of significance is .10.
- 3. F is the test statistic. df = n_1 - 1 = 10 - 1 = 9 df = n_2 - 1 = 10 - 1 = 9 α + 2 = .10 + 2 = .05 \rightarrow F = 3.18
- $F = \frac{s_1^2}{s_2^2}$ $= \frac{5^2}{4^2}$ = 1.56
- 4. If F for the test statistic is beyond the critical value of F, reject H₀.

Accept H_o because 1.56 < 3.18. Shopping time is not more variable.

VIII. Test at the .05 level of significance whether workplace accidents happen equally throughout the workweek.

Day	Accidents f_o	f _e	f _o -f _e	(f _o - f _e) ²	$(f_o - f_e)^2/f_e$
Monday	9	7	2	4	4/7 = 0.571
Tuesday	5	7	-2	4	4/7 = 0.571
Wednesday	6	7	-1	1	1/7 = 0.143
Thursday	5	7	-2	4	4/7 = 0.571
Friday	<u>10</u>	_7	3	9	9/7 = <u>1.286</u>
Totals	35	35	0		3.142

H₀: accidents are equally distributed

H₁: accidents are not equally distributed

df = k - 1 = 5 - 1 = 4

$$\alpha = .05 \rightarrow \chi^2 = 9.49$$

$$\chi^2 = \sum \left[\frac{(f_0 - f_e)^2}{f_e} \right] = 3.142$$

Accept H_o because 3.14 < 9.49. Accidents happen equally throughout the workweek.